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Environmental fate of NPs
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Solid-phase conundrum

• It is a constant point of difficulty in all solid 
phase systems that surface behavior is linked to 
the dispersion state of the particles.

• When dispersed, particles have high surface area and 
maximum interface for reaction.

• Yet, this is an energetically unstable condition.  
Flocculation reduces surface tension (predominant 
state).

• Thus, particles are in a continual state of flux.
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A common misconception
• A common 

misconception in NP 
experiments is that the 
suspension remains 
stable.  

• This is  rarely the case 
under the most optimal 
conditions.  

4Chappell et al. (In Review)



Electrostatics

• Exhibited by a certain 
repulsive charged 
volume expressed on 
the surface

• Dispersions of this kind 
have short-term stability 
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Surface complexation 
modeling
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NP-DLVO modeling
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• We are developing a software package for predicting environmental 
risk of NPs — NanoExpert (Steevens presentation)

• NP dispersion behavior:  Mathematic Demonstration project using 
NP-DLVO



Sterics
• Particles are stabilized by 

“crowding” of polymers on the 
particle surface.  

• This represents the most stable 
form of dispersion, and is 
commonly used for 
nanomaterials.  

• Steric stabilization usually occurs 
through addition of polymers, 
either through covalent bonding 
(e.g., PVP) or sorbed onto the 
surface, such as using a 
multifunctional surfactant.
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Consequences of stable 
dispersion
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Wetting/drying cycles

• Sorption can modify the 
NP “internally,” thus, 
possibly modifying both 
the surface and the 
dispersion state.

• This swelling appears 
associated with stabilizing 
dispersions (e.g., has 
been observed in clays)
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For natural environments:  
Humic interactions

• In the scientific literature, humics are 
attributed with three predominant behaviors 
with respect to contaminants:
• Chelating agents
• Surfactants
• Non-specific polymer interactions (e.g., 

sorption) – mostly polymeric saccharides
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Chelators

• If a molecule forms a strong complex with Ag+, then the 
Ag(OH)(s) cannot “sense” it, therefore, “increases” Ksp.

• The ability of humics to chelate heavy metals has been 
thoroughly in the scientific literature.  Thus, humics present 
a risk of increasing nano material dissolution for metallic 
species.
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AgOH(s) = Ag+ + OH-

Ksp = (Ag+) (OH-)



Surfactants

• These molecules are great for dispersing solids 
(e.g., detergents).

• Yet, linear separation is not necessary.  Humics
have been shown to demonstrate surfactant 
behavior, although resolving their CMC is difficult 
because of the heterogenous structure.
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Typical humic structures
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• Two types of humics:  
pyrogenic and 
biogenic.

• Actual surfactive and 
chelating behavior 
varies greatly with 
structure (and 
“availability” of 
functional groups) and 
compatibility of these 
groups  with nano-
material of interest.  



Typical measurements of NPs 
in suspension

• Particle size and size homogeneity –
dynamic light scattering (DLS)

• Suspension concentration – optical density 
measurements

• Dissolution products:  ISEs,  
ultracentrifugation, field flow fractionation

• Polymer sorption – difference between 
added and equilibrium concentrations
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Nano-Ag – chelators
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Nano-Ag – surfactants
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CNT interaction with 
surfactants

•
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CNT with humics

•
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Summary & Conclusions
• NP behavior generally follows colloidal 

chemistry, showing sophistication in dispersion 
behavior, with potential dissolution and 
crystalline swelling.

• IMPORTANT PROBLEM:   The regulatory 
requirements often exceeds current level of 
information for colloidal systems.  

• Small size and potential reactivity require 
additional questions/technologies not yet 
applied to satisfy regulations on environmental 
fate.  
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